Exercise 0.4.6
Prove Proposition 0.4.11 (Inverse image of intersection, union) 1 \( f^{-1} (A \cap B) = f^{-1} (A) \cap f^{-1} (B) \) Proof: 1 To show \(f^{-1}(A \cap B) \subset f^{-1} (A) \cap f^{-1} (B)\) \(x \in f^{-1}(A \cap B)\) を任意にとる。 すると、 \begin{align*} & f(x) \in A \cap B \qquad (\because \text{逆像の定義})\\ \Leftrightarrow & f(x) \in A \text{ and } f(x) \in B \\ \Leftrightarrow & x \in f^{-1}(A) \text{ and } x \in f^{-1}(B) \qquad (\because \text{逆像の定義}) \\ \Leftrightarrow & x \in f^{-1}(A) \cap f^{-1}(B) \quad \square \end{align*}...