Exercise 0.4.6

Prove Proposition 0.4.11 (Inverse image of intersection, union) 1 \( f^{-1} (A \cap B) = f^{-1} (A) \cap f^{-1} (B) \) Proof: 1 To show \(f^{-1}(A \cap B) \subset f^{-1} (A) \cap f^{-1} (B)\) \(x \in f^{-1}(A \cap B)\) を任意にとる。 すると、 \begin{align*} & f(x) \in A \cap B \qquad (\because \text{逆像の定義})\\ \Leftrightarrow & f(x) \in A \text{ and } f(x) \in B \\ \Leftrightarrow & x \in f^{-1}(A) \text{ and } x \in f^{-1}(B) \qquad (\because \text{逆像の定義}) \\ \Leftrightarrow & x \in f^{-1}(A) \cap f^{-1}(B) \quad \square \end{align*} ...

4月 5, 2023 · 2 分 · B.Kaoru

Exercise 0.3.1

Question \(E\) を\(A \subset E\) and \(B \subset E\)を満たす集合とし、 演算子\(\ast \) を以下で定義する。 \[ A \ast B = (E - A) \cap (E-B) \] このとき、 以下の a,b,c を、 \(A, B\), and \(\ast\)を用いて表せ。 a \(A \cup B\) b \(A \cap B\) c \(E - A\) Answer a \begin{align*} A \cup B &= E - ( \bar{A} \cap \bar{B} ) \\ &= E - \left\{ ( E - A) \cap (E-B) \right\} \\ &= E - A \ast B \\ &= (E - A \ast B) \cap (E - A \ast B) \\ &= (A \ast B) \ast (A \ast B) \end{align*} ...

3月 17, 2023 · 1 分 · B.Kaoru

3 つの数の相加相乗平均の不等式の証明

はい、こんにちは。 今日は、3 つの正の数の相加相乗平均の不等式の証明をしていきます。 2 つの数の相加相乗平均の不等式の証明は、できているものとします。 ではやっていきましょう。 \(G = \sqrt[3]{xyz}\)、\(A = \frac{x+y+z}{3}\)とする。 \(G \leq A\)を示す。 1. \(x = y = z\) の場合 \begin{align*} G &= \sqrt[3]{xyz} = \sqrt[3]{x^3} = x \\ A &= \frac{x+y+z}{3} = \frac{3x}{3} = x \\ \therefore G &= A \end{align*} 2. \(x = y = z\) が成り立たない場合 一般性を失わず、 \begin{equation} \label{eq:1} z < A < y \end{equation} とできる。 2 つの正の数\(x\)と\(y+z-A\)について、すでに証明済みの 2 数の相加相乗平均を考える。 相乗平均(geometric mean) を\(g\)、 相加平均(arithmetical mean) を\(a\)とすると、 ...

3月 6, 2023 · 1 分 · B.Kaoru